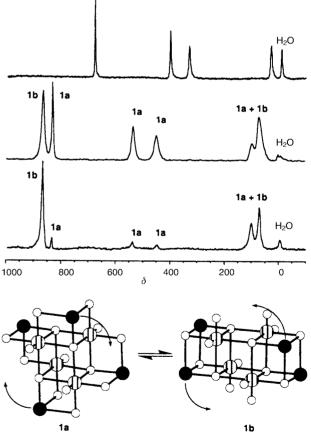
$(\eta^{6}-Arene)$ ruthenium oxomolybdenum and oxotungsten clusters. Stereochemical non-rigidity of [{Ru($\eta^{6}-p$ -MeC₆H₄Prⁱ)}₄Mo₄O₁₆] and crystal structure of [{Ru($\eta^{6}-p$ -MeC₆H₄Prⁱ)}₄W₂O₁₀]

Vincent Artero, Anna Proust,* Patrick Herson, René Thouvenot and Pierre Gouzerh*

Laboratoire de Chimie Inorganique et Matériaux Moléculaires, Unité CNRS 7071, Case 42, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France. E-mail: proust@ccr.jussieu.fr and pg@ccr.jussieu.fr


Received (in Basel, Switzerland) 21st January 2000, Accepted 7th April 2000

According to a multinuclear NMR study, the cluster [{Ru(η^6 -*p*-MeC_6H_4Pr^i)} $_4Mo_4O_{16}$] exists as two isomers, the windmill-like form and the triple-cubane form, which are in equilibrium in solution, while the tungsten analogue, which has been obtained together with the double-cubane type cluster [{Ru(η^6 -*p*-MeC_6H_4Pr^i)} $_4W_2O_{10}$] by reaction of [{Ru(η^6 -*p*-MeC_6H_4Pr^i)Cl₂] with (NBuⁿ₄)₂[WO₄] in acetonitrile, only displays the windmill-like structure.

Organometallic derivatives of polyoxometalates now form a full class of compounds.¹ We have recently reported a series of integrated organometallic oxo(alkoxo)molybdenum clusters containing fac-{M(CO)₃}⁺ (M = Mn or Re) units.² The apparent structural relationships between these clusters and those of previously reported polyoxo(alkoxo)molybdates underscore the electronic connection between d⁶-fac-{ML₃} (M = Mn or Re) and d⁰-fac-{MOO₃} or d⁰-fac-{MOO₂(OR)}⁺ units. Then we turned towards the reactivity of [{(η^6 -arene)RuCl₂}] with oxometalates in order to extend the concept of topological equivalent units.

The cluster [{ $Ru(\eta^6-p-MeC_6H_4Pr^i)$ }_4W_4O_{16}] **2**, whose molybdenum analogue [{ $Ru(\eta^6-p-MeC_6H_4Pr^i)$ }_4Mo_4O_{16}] 1 was recently reported by Süss-Fink et al.,3,4 has been obtained by reacting [{ $(\eta^6-p-MeC_6H_4Pr^i)RuCl_2$ }] with (NBuⁿ₄)₂[WO₄] in acetonitrile.[†] In the solid state, 2 is isostructural with 1 and displays the so-called windmill-like structure,^{3,4} *i.e.* it consists of a $[W_4O_{16}]^{8-}$ cubic core capped by four $\{Ru(\eta^6-p-MeC_6-$ H₄Prⁱ)}²⁺ groups each bound to a triply bridging and two terminal oxo ligands.[‡] The only previous example of a polyoxoanion-supported organometallic complex based on $[W_4O_{16}]^{8-}$ is $[\{Ir(cod)\}_6W_4O_{16}]^{.5}$ The ¹H, ¹⁸³W and ¹⁷O NMR spectra indicate that 2 exists in a single form in chloroform. Moreover, the ¹⁷O NMR spectrum of $\tilde{2}$ is fully consistent with the windmill-like structure. Indeed, it displays four signals in approximate relative intensities 1:1:1:1 assigned to terminal (O_t) , doubly bridging (there are two sets of four μ_2 -O ligands) and quadruply bridging (μ_4 -O) oxo ligands, in the order of increasing shielding (Fig. 1). On the other hand, a different pattern has been reported for the ¹⁷O NMR spectrum of **1** in CD_2Cl_2 ,⁴ and this prompted us to reinvestigate the behaviour of 1.

During the course of this study, **1** and $1 \cdot C_6 H_5 Me$ have been characterized by X-ray diffraction in addition to $1 \cdot 2C_6 H_5 Me$ that was described by Süss-Fink *et al.*^{3,4} In the three compounds **1** displays the windmill-like geometry. The ¹H NMR spectra of the three compounds in solution are similar apart from the signals due to toluene. However the ¹H, ¹⁷O and ⁹⁵Mo NMR spectra are dependent on the solvent and indicate the presence of two distinct species. Indeed two signals (⁹⁵Mo) or two sets of signals (¹H and ¹⁷O) are observed with nearly equal intensities in chloroform but quite different intensities in dichloromethane. The change in solution was shown to be reversible. The major set of ¹⁷O resonances in CH₂Cl₂ is consistent with the triplecubane structure **1b** (Fig. 1). Indeed, it is composed of three signals in relative intensities 2:1:1, assigned to O_t, μ_3 -O and μ_4 -O, respectively, in the order of increasing shielding. This assignment, which is at variance with that of Süss-Fink et al.,4 is further supported by the comparison with the ¹⁷O NMR spectrum of the triple-cubane cluster [(Cp*Rh)₄Mo₄O₁₆].⁶ The minor set of signals in CH₂Cl₂ is consistent with the windmilllike structure 1a. It follows from this multinuclear NMR study that 1 predominantly exists in the triple-cubane form 1b in dichloromethane. Considering the significant change in the equilibrium constant on going from dichloromethane to chloroform, the energy difference between the two forms of 1 should be low. This stereochemical change, which is slow on the NMR time scales, does not depend on the residual water content and could involve a concerted motion of two { $Ru(\eta^6-p-MeC_6 H_4Pr^i$) $^{2+}$ groups (Fig. 1). There are only a few precedents for the mobility of organometallic cations on polyoxometalates.7 In addition to the equilibrium between 1a and 1b, there is a faster dynamic process which exchanges the μ_2 -O oxo ligands in **1a**.

Fig. 1 Unlocked 40.7 MHz ¹⁷O NMR spectra of enriched samples of **2** (top, CHCl₃, 333 K) and **1** (middle, CHCl₃, 297 K; bottom, CH₂Cl₂, 293 K) and postulated mechanism for the interconversion between the windmill-like form **1a** and the triple-cubane form **1b** (Mo atoms are shown as hatched spheres and Ru atoms as black spheres; *p*-cymene ligands have been omitted for clarity).

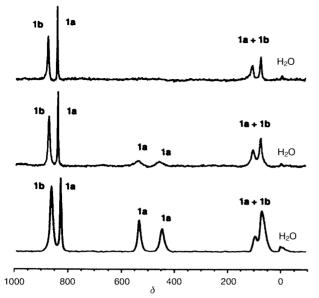


Fig. 2 Unlocked 40.7 MHz ¹⁷O NMR spectra of enriched samples of **1** in CHCl₃ at 333 K (top), 313 K (middle) and 297 K (bottom).

Indeed the signals for the two types of μ_2 -O ligands broaden as the temperature is raised and are hardly observed above 313 K (Fig. 2). The most likely mechanism to explain this phenomenon is a concerted motion of the four organometallic units along the diagonals of the faces of the central cubic core.

Another cluster, $[{Ru(\eta^6-p-MeC_6H_4Pri)}_4W_2O_{10}]\cdot 3H_2O$ (**3**·3H₂O), was obtained as a by-product in the preparation of **2**. An X-ray structure analysis⁺ revealed that **3** displays a doublecubane framework consisting of two fused $[{Ru(\eta^6-p-MeC_6-H_4Pri)}_2W_2O_8]$ cubes (Fig. 3). Discrete mono-cubane,^{2,8} triplecubane^{6,9} and quadruple-cubane⁹ clusters have been reported. To the best of our knowledge, **3** provides the first example of a discrete double-cubane cluster. The mono-cubane clusters $[{Ru(\eta^6-p-MeC_6H_4Pri)}_2W_2O_{10}]$ (M = Mo or W) are not expected to be stable because the environments of the two M atoms would violate the Lipscomb rule.¹⁰ Thus such units, once formed, should undergo condensation processes.

We are currently investigating the influence of the arene on the equilibium between the two forms of 1 and we are exploring the potential of these and related species in catalytic reactions.

Notes and references

† *Synthesis* of **2** and **3**. A solution of [{(η⁶-*p*-MeC₆H₄Prⁱ)RuCl₂}₂] (306 mg, 0.5 mmol) and (NBuⁿ₄)₂[WO₄] (733 mg, 1 mmol) in MeCN (15 mL) was stirred at room temperature for 5 h upon which a yellow precipitate of **2** formed. It was filtered and washed with 3 mL MeCN (215 mg, 51%). ¹H NMR (300.13 MHz, CDCl₃): δ 1.34₅ (d, *J* 6.9 Hz, 3H), 1.35 (d, *J* 6.9 Hz, 3H), 2.41 (s, 3 H), 3.05 (heptet, *J* 6.9 Hz, 1H), 5.34 (d, *J* 5.7 Hz, 1H), 5.56 (d, *J* 5.8 Hz, 1H), 5.64 (d, *J* 5.7 Hz, 1H), 5.75 (d, *J* 5.8 Hz, 1H); ¹⁷O NMR (40.7 MHz, CHCl₃, 333 K): δ 27 (40), 329 (40), 399 (40), 676 (40); ¹⁸³W NMR (20.8 MHz, CDCl₃): δ 351; IR (KBr pellet, V/cm^{-1}): 935s(W=O), 878w, 803s, 750s, 644w(W–O), 608m, 492m; Anal.: C, 24.29; H, 2.91; Ru, 19.23; W. 37.35. C₄₀H₅₆O₁₆Ru₄W₄ requires C, 24.86; H, 2.92; Ru, 20.92; W, 38.05%.

Slow evaporation of the filtrate at 25–30 °C afforded red sticky crystals of **3**·3H₂O (40 mg, 10%); ¹H NMR (300.13 MHz, CDCl₃): δ 1.39 (d, *J* 6.8 Hz, 6H), 2.29 (s, 3 H), 3.07 (heptet, *J* 6.8 Hz, 1H), 5.29 (d, *J* 5.9 Hz, 2H), 5.34 (d, *J* 5.9 Hz, 2H); IR (KBr pellet, $\bar{\nu}/\text{cm}^{-1}$): 916s, 897s (W=O), 652m, 624(sh), 607s, 574m, 512m (W–O); Anal.: C, 31.59; H, 4.19; Ru, 25.13; W, 23.79. C₄₀H₆₂O₁₃Ru₄W₂ requires C, 31.55; H, 4.07; Ru, 26.55; W 24.14%.

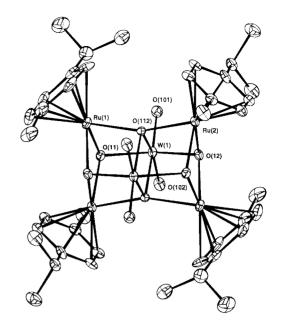


Fig. 3 Molecular structure of [$\{Ru(\eta^6-p-MeC_6H_4Pri)\}_4W_2O_{10}$] in 3·3H₂O. Selected bond lengths (Å): W(1)–O(11) 1.947(7), W(1)–O(12) 1.932(8), W(1)–O(101) 1.731(9), W(1)–O(102) 1.748(9), W(1)–O(112) 2.180(7), W(1)–O(112) 2.268(7), Ru(1)–O(11) 2.104(8), Ru(1)–O(12) 2.089(9), Ru(1)–O(112) 2.084(7), Ru(2)–O(11) 2.114(8), Ru(2)–O(12) 2.085(8), Ru(2)–O(112) 2.095(7). Primed atoms are generated by the crystallographic inversion centre. Carbon atom labels have been omitted for clarity.

[‡] Crystal data: for 2·C₆H₅Me: M = 2116.83, a = 15.031(5), b = 15.303(5), c = 15.334(6) Å, $\alpha = 72.85(3)$, $\beta = 73.09(3)$, $\gamma = 64.30(3)^{\circ}$, U = 2982(2) Å³, T = 298 K, space group $P\overline{1}$, Z = 2. Single crystals of 2·C₆H₅Me were obtained from a CH₂Cl₂ solution of 2 layered by toluene; they decayed during data collection so that accurate structural parameters could not be obtained owing to an insufficient number of observed data.

For **3**·3H₂O: M = 1522.90, a = 13.857(7), b = 13.898(8), c = 14.232(6)Å, $\alpha = 114.01(4)$, $\beta = 91.01(4)$, $\gamma = 112.79(4)^{\circ}$, U = 2257(3) Å³, T = 298K, space group *P*1, Z = 2, μ (Mo–K α) = 2.24 cm⁻¹, 8300 reflections measured, 7942 unique ($R_{int} = 8.3\%$). Structure solution (direct methods) and refinement (full matrix least squares on F²) based on 5326 refgictions with $I > 3\sigma(I)$ converged at a conventional *R* of 0.056.

CCDC 182/1597. See http://www.rsc.org/suppdata/cc/b0/b000782j/ for crystallographic files in .cif format.

- 1 P. Gouzerh and A. Proust, Chem. Rev., 1998, 98, 77.
- 2 R. Villanneau, R. Delmont, A. Proust and P. Gouzerh, *Chem. Eur. J.*, 2000, **6**, 1184.
- 3 G. Süss-Fink, L. Plasseraud, V. Ferrand and H. Stoeckli-Evans, *Chem. Commun.*, 1997, 1657.
- 4 G. Süss-Fink, L. Plasseraud, V. Ferrand, S. Stanislas, A. Neels, H. Stoeckli-Evans, M. Henry, G. Laurenczy and R. Roulet, *Polyhedron*, 1998, 17, 2817.
- 5 Y. Hayashi, F. Müller, Y. Lin, S. M. Miller, O. P. Anderson and R. G. Finke, J. Am. Chem. Soc., 1997, 119, 11 401.
- 6 Y. Hayashi, K. Toriumi and K. Isobe, J. Am. Chem. Soc., 1988, 110, 3666.
- 7 C. J. Besecker, V. W. Day, W. G. Klemperer and M. R. Thompson, J. Am. Chem. Soc., 1984, **106**, 4125; M. Abe, K. Isobe, K. Kida and A. Yagasaki, *Inorg. Chem.*, 1996, **35**, 5114; T. Nagata, M. Pohl, H. Weiner and R. G. Finke, *Inorg. Chem.*, 1997, **36**, 1366.
- 8 K. Isobe and A. Yagasaki, Acc. Chem. Res., 1993, 26, 524; U. Koelle, Chem. Rev., 1998, 98, 1313; C. D. Abernethy, F. Bottomley, R. W. Day, A. Decken, D. A. Summers and R. C. Thompson, Organometallics, 1999, 18, 870.
- 9 Y. Do, X.-Z. You, C. Zhang, Y. Ozawa and K. Isobe, J. Am. Chem. Soc., 1991, 113, 5892.
- 10 W. N. Lipscomb, Inorg. Chem., 1965, 4, 132.